Ude-based Robust Control for a Class of Non-affine Nonlinear Systems
نویسندگان
چکیده
In this paper, the UDE (uncertainty and disturbance estimator) based robust control is investigated for a class of non-affine nonlinear systems in a normal form. Control system design for non-affine nonlinear systems is one of the most difficult problems due to the lack of mathematical tools. This is also true even for the exact known non-affine systems because of the difficulty in explicitly constructing the control law. It is shown that the proposed UDE-based robust control strategy leads to a stable system. The most important features of the approach are that (i) by adding and subtracting the control term u, the original non-affine form is transformed into a semi-affine form, which not only simplifies the control design procedure, but also avoids the singularity problem of the controller; (ii) the employment of UDE makes the estimation of the lumped uncertain term which is a function of control input, states and disturbances possible, rather than states alone; and (iii) it does not require any knowledge (e.g., bounds) about the uncertainties and disturbances, except the information about the bandwidth, during the design process. The stability of the closed-loop system is established. Effectiveness of the proposed approach is demonstrated through application to the hard disk driver control problem.
منابع مشابه
Passivity-Based Stability Analysis and Robust Practical Stabilization of Nonlinear Affine Systems with Non-vanishing Perturbations
This paper presents some analyses about the robust practical stability of a class of nonlinear affine systems in the presence of non-vanishing perturbations based on the passivity concept. The given analyses confirm the robust passivity property of the perturbed nonlinear systems in a certain region. Moreover, robust control laws are designed to guarantee the practical stability of the perturbe...
متن کاملAN OBSERVER-BASED INTELLIGENT DECENTRALIZED VARIABLE STRUCTURE CONTROLLER FOR NONLINEAR NON-CANONICAL NON-AFFINE LARGE SCALE SYSTEMS
In this paper, an observer based fuzzy adaptive controller (FAC) is designed fora class of large scale systems with non-canonical non-affine nonlinear subsystems. It isassumed that functions of the subsystems and the interactions among subsystems areunknown. By constructing a new class of state observer for each follower, the proposedconsensus control method solves the problem of unmeasured sta...
متن کاملAdaptive Consensus Control for a Class of Non-affine MIMO Strict-Feedback Multi-Agent Systems with Time Delay
In this paper, the design of a distributed adaptive controller for a class of unknown non-affine MIMO strict-feedback multi agent systems with time delay has been performed under a directed graph. The controller design is based on dynamic surface control method. In the design process, radial basis function neural networks (RBFNNs) were employed to approximate the unknown nonlinear functions. S...
متن کاملDecentralized Adaptive Control of Large-Scale Non-affine Nonlinear Time-Delay Systems Using Neural Networks
In this paper, a decentralized adaptive neural controller is proposed for a class of large-scale nonlinear systems with unknown nonlinear, non-affine subsystems and unknown nonlinear time-delay interconnections. The stability of the closed loop system is guaranteed through Lyapunov-Krasovskii stability analysis. Simulation results are provided to show the effectiveness of the proposed approache...
متن کاملDesign of a Novel Framework to Control Nonlinear Affine Systems Based on Fast Terminal Sliding-Mode Controller
In this paper, a novel approach for finite-time stabilization of uncertain affine systems is proposed. In the proposed approach, a fast terminal sliding mode (FTSM) controller is designed, based on the input-output feedback linearization of the nonlinear system with considering its internal dynamics. One of the main advantages of the proposed approach is that only the outputs and external state...
متن کامل